3.2.16 \(\int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx\) [116]

3.2.16.1 Optimal result
3.2.16.2 Mathematica [A] (verified)
3.2.16.3 Rubi [A] (verified)
3.2.16.4 Maple [B] (verified)
3.2.16.5 Fricas [A] (verification not implemented)
3.2.16.6 Sympy [F(-1)]
3.2.16.7 Maxima [F]
3.2.16.8 Giac [A] (verification not implemented)
3.2.16.9 Mupad [F(-1)]

3.2.16.1 Optimal result

Integrand size = 21, antiderivative size = 98 \[ \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx=\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {14 a^3 \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d} \]

output
2*a^(5/2)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+14/3*a^3*si 
n(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/3*a^2*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2 
)/d
 
3.2.16.2 Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.91 \[ \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx=\frac {2 a^2 \sqrt {a (1+\cos (c+d x))} \left (3 \text {arctanh}\left (\sqrt {1-\cos (c+d x)}\right )+\sqrt {1-\cos (c+d x)} (8+\cos (c+d x))\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{3 d \sqrt {1-\cos (c+d x)}} \]

input
Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x],x]
 
output
(2*a^2*Sqrt[a*(1 + Cos[c + d*x])]*(3*ArcTanh[Sqrt[1 - Cos[c + d*x]]] + Sqr 
t[1 - Cos[c + d*x]]*(8 + Cos[c + d*x]))*Tan[(c + d*x)/2])/(3*d*Sqrt[1 - Co 
s[c + d*x]])
 
3.2.16.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3042, 3242, 27, 3042, 3460, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) (a \cos (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3242

\(\displaystyle \frac {2}{3} \int \frac {1}{2} \sqrt {\cos (c+d x) a+a} \left (7 \cos (c+d x) a^2+3 a^2\right ) \sec (c+d x)dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \sqrt {\cos (c+d x) a+a} \left (7 \cos (c+d x) a^2+3 a^2\right ) \sec (c+d x)dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (7 \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+3 a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {1}{3} \left (3 a^2 \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {14 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a^2 \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {14 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {1}{3} \left (\frac {14 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {6 a^3 \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}+\frac {1}{3} \left (\frac {6 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {14 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )\)

input
Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x],x]
 
output
(2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d) + ((6*a^(5/2)*ArcTanh[ 
(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (14*a^3*Sin[c + d*x] 
)/(d*Sqrt[a + a*Cos[c + d*x]]))/3
 

3.2.16.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3242
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
+ n))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c* 
(m - 2) + b^2*d*(n + 1) + a^2*d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 
 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[ 
n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[ 
c, 0]))
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
3.2.16.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(245\) vs. \(2(84)=168\).

Time = 1.97 (sec) , antiderivative size = 246, normalized size of antiderivative = 2.51

method result size
default \(\frac {a^{\frac {3}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+18 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+3 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +3 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a \right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(246\)

input
int((a+cos(d*x+c)*a)^(5/2)*sec(d*x+c),x,method=_RETURNVERBOSE)
 
output
1/3*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*2^(1/2)* 
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^2+18*2^(1/2)*(a* 
sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))* 
(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/ 
2)+2*a))*a+3*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1 
/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)/sin(1/2*d*x+ 
1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.2.16.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.50 \[ \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx=\frac {3 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (a^{2} \cos \left (d x + c\right ) + 8 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c),x, algorithm="fricas")
 
output
1/6*(3*(a^2*cos(d*x + c) + a^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d* 
x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + 
 c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(a^2*cos(d*x + c) + 8*a^ 
2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c) + d)
 
3.2.16.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c),x)
 
output
Timed out
 
3.2.16.7 Maxima [F]

\[ \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right ) \,d x } \]

input
integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c),x, algorithm="maxima")
 
output
integrate((a*cos(d*x + c) + a)^(5/2)*sec(d*x + c), x)
 
3.2.16.8 Giac [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.22 \[ \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx=-\frac {\sqrt {2} {\left (8 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, \sqrt {2} a^{2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - 36 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{6 \, d} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c),x, algorithm="giac")
 
output
-1/6*sqrt(2)*(8*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 3*s 
qrt(2)*a^2*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4* 
sin(1/2*d*x + 1/2*c)))*sgn(cos(1/2*d*x + 1/2*c)) - 36*a^2*sgn(cos(1/2*d*x 
+ 1/2*c))*sin(1/2*d*x + 1/2*c))*sqrt(a)/d
 
3.2.16.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\cos \left (c+d\,x\right )} \,d x \]

input
int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x),x)
 
output
int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x), x)